

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

V6 Planning ... take 2 3

Revisiting our Approach, Schedule, Process and Goals

Steven Friedman AIRS Science Processing

April 17, 2008

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration.

Approach Putting everything in its proper time and place

 Provide sufficient time to develop a quality V6 product exhibiting significant improvement over V5

Time allocated for:

 Preliminary investigations, prototyping and demonstration tests

- Development time greater than 1 year for development and test
- Integration into AIRS PGE at JPL
- Testing six months allocated for comprehensive tests
- Mid-course corrections, status checks at least two more Science Team meetings (Fall 2007 [this meeting] and Spring 2008)

V6 Schedule

V6 Schedule

V6 Milestones

Schedule includes sufficient time for:

- Preliminary investigations / prototyping six months
- Total development time greater than 1 year
- Testing three months

V6 Kickoff - Science Team MTG

Concept Development and Prototyping ends

V6 Content Determination - Science Team MTG

V6 Algorithm Development ends

V6 Status - closure issues - Science Team MTG

V6 Code Integration at JPL (CCB controlled)

V6 Candidate Build

V6 Integration and Test

Science Team Verification of V6 Products

V6 Delivery to GES DISC

V6 Operational

October 2007

April 2008

April 2008

We are here

Can we do it?

July 2008

July 2008

August 2008 - March 2009

March 2009

April - June 2009

June - July 2009

August 2009

November 2009

Concept Phase

- Science Team is encouraged to develop new concepts approaches that will result in significant improvements to AIRS products
- CCB will move slowly approving minimal changes to code base
- Control changes to mitigate externalities

Development Phase

- Prior to delivery, developer must demonstrate functionality and effectiveness in working prototype
- Science Team and AIRS Project will concur on significant changes
- Developer must Demonstrate that code produces same (and intended) results once integrated into a working prototype of the AIRS PGE at JPL in the AIRS development environment
- Code does not cause adverse downstream effects

Integration and Test Phase

- Tightly controlled code
- CCB will not entertain new concepts, good ideas, well intentioned improvements, ...

L1 Improvement Priorities

Level 1B Priorities

- Improve Spectral Calibration
- Maintain Channel Properties
- Allow Dynamic Noise Estimates
- Level 1C This is a New Product!
 - Resampled L1B product to constant spectral grid, etc.

Operations Priorities

- Instrument Maintenance and Calibration
- Trending Performance and Icing

L2 Improvement Priorities

- Improve Boundary Layer Sensitivity
 - Incorporate accurate Emissivity Product to support weather forecasting
 - Improve Boundary Layer Sensitivity over land and ice of all products
- Improve Yield in Critical Areas: Polar, proximity to storms, above clouds
- Initialization State and Error Estimation
 - Evaluate alternate error propagation to improve basis of errors
- RTA Improvement: Reduces Biases in water and gases
- Trace Gas Retrieval Improvement: CO, CH4, O3
- Improve OLR Retrieval
- Cloud and Dust Retrievals: Demonstrate IR value for cloud/dust products
 Potential new products!
- Mid Tropospheric CO2 This is a new product!

L3 Improvement Priorities

• L3 Priorities

- Incorporate new Products
- Reduce Sampling Bias Effects
- Alternate Formats for Users

Team Meeting 2008.04,15-17 Caltech

Validation Priorities

• Comprehensive Validation of:

- Water Vapor
- Clouds
- Aerosols
- CO, CO₂, CH₄, O₃

Validate Sites:

- Polar Regions
- Boundary Layer
- Aircraft Campaigns

Most Effective use of AIRS Lenticular Card

AIRS: 2008-04-17 - 10